167 research outputs found

    K-shell ionization by antiprotons

    Get PDF
    We present calculations for the impact-parameter dependence of K-shell ionization rates in p¯-Cu and in p¯-Ag collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the antibinding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross sections for protons

    Ionization and pair creation in relativistic heavy-ion collisions

    Get PDF
    Ionization, pair creation, and electron excitations in relativistic heavy-ion collisions are investigated in the framework of the coupled-channel formalism. Collisions between heavy projectiles and Pb82+ are considered for various bombarding energies in the region E=500 up to 2000 MeV/u. Useful symmetry relations for the matrix elements are derived and the influence of gauge transformations onto the coupled-channel equations is explored

    Spin polarization of electrons induced by strong collisional magnetic fields

    Get PDF
    We calculate the spin polarization of 1sσ vacancies and emitted δ electrons induced by the strong magnetic field (|Bmax|∼1016G) in collisions of very heavy ions (Z1+Z2=178). The electron excitations are determined by the solution of coupled-channel equations within the quasimolecular basis states including the vector potential. The formulation is extended to the many-electron case. Spin polarizations of the order of 5-10% for impact energies below the Coulomb barrier are predicted

    Spectroscopy of electronic states in superheavy quasimolecules

    Get PDF
    We show that information about quasimolecular electronic binding energies in transient atomic systems of Z=Z1+Z2 up to 184 can be obtained from three sources: (1) the impact-parameter dependence of the ionization probability; (2) the ionization probability in head-on collisions as a function of total nuclear charge Z; (3) the delta-electron spectrum in coincidence with K-vacancy formation in asymmetric collisions. Experiments are proposed and discussed

    Multiplicity distribution of electron-positron pairs created by strong external fields

    Get PDF
    We discuss the multiplicity distribution of electron-positron pairs created in the strong electromagnetic fields of ultrarelativistic heavy-ion transits. Based on nonperturbative expressions for the N-pair creation amplitudes, the Poisson distribution is derived by neglecting interference terms. The source of unitarity violation is identified in the vacuum-to-vacuum amplitude, and a perturbative expression for the mean number of pairs is given

    Inner-shell ionization induced by nuclear Coulomb excitation in collisions of very heavy ions

    Get PDF
    K- and L-shell ionization of 238U with Xe and U projectiles is investigated. Internal conversion following nuclear Coulomb excitation which is particularly important for deformed heavy nuclei is compared with direct ionization of inner-shell electrons in superheavy quasimolecules. Both processes exhibit different impact-parameter dependences. As a result of internal conversion, about 0.1-0.3 K holes per central collision are created

    Monoenergetic positron conversion in heavy ion fragments

    Get PDF
    Conversion processes in light nuclei with transition energies above the e+, e- pair creation threshold are investigated within an analytical framework. In particular, we evaluate the ratio of electron transition probabilities from the negative energy continuum into the atomic K shell and into the positive energy continuum, respectively. The possible role of monoenergetic positron conversion with respect to the striking peak structures observed in e+ spectra from very heavy collision systems is examined

    Lower bound to limiting fields in nonlinear electrodynamics

    Get PDF
    In view of new high-precision experiments in atomic physics it seems necessary to reexamine nonlinear theories of electrodynamics. The precise calculation of electronic and muonic atomic energies has been used to determine the possible size of the upper limit Emax to the electric field strength, which has been assumed to be a parameter. This is opposed to Born's idea of a purely electromagnetic origin of the electron's mass which determines Emax. We find Emax≥1.7×1020 V/cm
    corecore